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Entropic Dimension for Completely Positive Maps 
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We extend the concept of quantum dynamical entropy he(7) to cover the case of 
a completely positive map ,/. For h~(7)= 0 we examine the limit 

he(N, ?,/~) = lim (1/n a) He(N, ?N,..., "y" IN) 
n 

calling the turning point /~0 between zero and infinite he(N , "~, 8) the "entropic 
dimension" NN(~/). The application of this theory to a solvable irreversible quan- 
tum dynamical semigroup on a one-dimensional fermion lattice provides any 
value of ~N(7) between 0 and 1. 

KEY WORDS:  (Quantum) dynamical entropy; completely positive map; 
contraction semigroup; entropic dimension. 

1. I N T R O D U C T I O N  

Ergodic theory is a well-developed branch in mathematics  that  originated 
from the physical mot ivat ion to unders tand thermodynamic  behavior, 
especially the approach  to equilibrium. In order to make quantitative 
statements about  the approach  to equilibrium, the concept  of dynamical  
ent ropy turned out  to be a useful tool. (1) 

However,  the approach  to equilibrium happens on the microscopic 
level, which is manifestly non-Abelian, and therefore it was necessary to 
translate the concept  of dynamical  entropy also to the quan tum case. (2-m 
We were able to give a definition and also to calculate the dynamical  
entropy for the shift and for the free time evolution. (4'5) In ref. 6 the 
definition was generalized from a one-parameter  au tomorph ism group to 
Z~-automorphism groups, making it possible to study space translations 
together with time translations. 
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1274 Benatt i  and Narnhofer  

Already for the classical problem, Goldstein (7) argued that the 
mathematical results are better than the physicist wants them to be, in the 
sense that the dynamical entropy of the free time evolution is positive. 
Thus, the free time evolution is perfectly mixing in the sense of the 
mathematical description, whereas the physicist expects a qualitative 
improvement of mixing when the system is interacting. Goldstein (7) 
suggested that in order to observe a qualitative change we have to examine 
a variation of the dynamical entropy, namely the entropy of the space- 
time-translation group R 4. But in ref. 6 it is shown that at least for a lattice 
system we cannot observe anything else but zero dynamical entropy of the 
whole group 1t 4. To make a finer distinction between time evolution with 
vanishing dynamical entropy (so, e.g., no time evolution at all) and time 
evolution with positive dynamical entropy (with finite group velocity like 
free time evolution), so as to find a kind of diffusion that spreads like x/-t, 
we have to change the definition of the dynamical entropy. We consider 

1 
lim ~ H~(~(N),..., ~n I(N)) 

and call this value of fl for which the limit changes from 0 to ~ the 
entropic dimension of the automorphism with respect to N. For/~ = 1 we 
obtain the usual dynamical entropy. 

Of course, we want to check in an example whether such a definition 
can really be applied. Unfortunately, the only example of time evolutions 
that are sufficiently explicit to be examined in this context are the quasifree 
time evolutions, and for these/~ = 1. But it is also possible to carry through 
the concept of dynamical entropy for contraction semigroups and here we 
will give examples where any value 0 ~</~ ~< 1 can be obtained as entropic 
dimension. 

2. THE D Y N A M I C A L  ENTROPY OF A C O N T R A C T I O N  M A P  

In this section we give the definition of the dynamical entropy of com- 
pletely positive maps on C* or von Neumann algebras. To a large extent 
we only have to copy the results of ref. 4; the generalization from 
automorphism to c.p. maps are only minor, but for the convenience of the 
reader we repeat the definitions as far as we shall need them in the 
following. 

We start with a UHF algebra, i.e., the C*-algebra, that is obtained as 
the norm limit of an increasing sequence of finite-dimensional matrix 
subalgebras 

d = lim ~) 
r t ~  

(For generalization to nuclear C*-algebras see ref. 4.) 
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Let N~ ..... Ark be finite-dimensional subalgebras of a#. Let the state o~ 
be decomposed into states of ad 

(2)= 2 O') 'l,...,ik=--- 2 (A) I'  ('oli,= E (L) i!,.--,il,--.,ik 
i>, ;k ~ i>., ik,i! n~r (2.1) 

oh{= t t ,, % t % ( 1 )  

Def in i t ion  2.2. 

[ 2  k H~(NI,.. . ,Nk)= sup - -coi (1) lno) / ( l )q-  2 ~c%(1) lnc~  
c o = ' P / ~ o l  L I l = 1  it 

+ Y, 
l =  1 i !  

where S(~o]&) IN is the relative entropy of the state ~o with respect to aS, 
both restricted to N. Similarly, with 7~ completely positive maps (e.g., the 
inclusion iN) 

H~o(71 . . . . .  7 . ) = s u p 2 +  -'- + ~ 2 ~ o i ! ( 1 )  S(c-o~ 

Propert ies  2.3. 

1. 

2. 

3. 

4. 

In ref. 4 the following properties are shown: 

0 ~ H~o(N) <~ S(Og]N) 

Ho~(N) = H~o(N, N) 

n ~ ( x l  ,..., Nk) <~ H~(N1 ,..., Nk) for mi c N~ 

n o ~ ( X l  ..... m k )  <~ ' ~ / k =  1 H c o ( X i )  

We add (compare ref. 2): 

5. Let 

H o , ( N \ N ) =  sup 2ooi(1)[S(oJl@llu-S(~la~i)[~] 
o)~Zcoi i 

Then 
fL 

Ho~(N1 ..... Nk) <- Ho~(N,) + L Ho~(Ni\Ni l) 
i = l  

Proof. Taking for N~ ..... Nk the optimal decomposition, we obtain 

H~o(N1 ..... Nk_ 1, Nk) -- Ho(N1 ..... Nk_ 1, Nk) 

<~ sup ~[S(colw~)lNk--g(eolmi)i&] 
oa = "Y" mi i 

= sup ~ r )ES(co IG)ink - s(6ot(f)i)]2~ k ]  ~ H(Nk\Nk)  
(~ = '~ COl i 
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Therefore 

H~(N~,..., Nk)<~Ho~(N~,..., Nk_~, Nk_~)+ H~.~(Nk\Nk ~) 

= Ho(N~,..., Nk_ ~) + Ho~(Nk\Nk_~) 

and by induction 
k 1 

<~H+(N~)+ ~ H+(N++~\N+) 
i = O  

6. For N c 6 N, .~ ~ 6 N, [Ho~(N)- H~(N)I ~< cel/3[ln 2. d(N)J/a. (4,s) 
For  the definition of ~ 6, see refs. 2 and 4. 

Now we consider a completely positive map y from d on d that 
satisfies co o 7 = co. 

Def in i t ion  2.4. 

ho~(N, y ) = l i m -  ! H~(N, .... y" tN) 
n 

Remark. Due to the subadditivity (2.3), (2.4) it suffices to argue that 

Ho~(y"N)= sup ~coi(1)S(~ooT"l&ioT~)lu 
~J = ~ oai i 

< sup E~o,(1)S(COt&~)I~=HAN) 
co = ~2 o9i 

to prove that the limit in (2.4) exists and equals the infimum. The argument 
runs as follows: We can now use co = Z i  oSi as a decomposition for Ho~(N), 
where c5=co~o7". Since the (5~ do not exhaust all the possible decom- 
positions of co, Ho~(N) is bigger than Ho~(7"N). 

Now we want to get rid of the reference subalgebra N and make the 
following definition. 

Def in i t ion  2.5. 

ho~(7) = sup ho~(N, y) 
N f i n i t e  d i m e n s i o n a l  

But we have even the stronger analogue of the Kolmogoroff-Sinai 
theorem: 

Proposi t ion 2.6. Let Nk be an ascending sequence of finite-dimen- 
sional subalgebras, such that 

d = n-lim U Nk or / #  = n ( d ) "  = st-lim U N~ 
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Then 

h~o(7) = lira h~(N~, ~) = sup ho~(Nk, 7) 
k k 

Continuity properties of Hco(N, 7) are discussed in refs. 4 and 8 in 
detail. Examining the proof, we have only to use Schwarz positivity (ref. 4, 
Corollary VI.4) to see if, z, "~ are c.p. maps from d into d / ,  then 

117~Er(a)- ~(a)] •11 ~< [l~(a)- ~(a)~l[ 

In ref. 4 it is shown that to any finite-dimensional subalgebra N and e there 
exists some N~ such that we can find a c.p. map zk from N into Ark with 
H(n-  ~kn)Ol[ < e, Vn E N, and therefore with the continuity estimate o f  s) 

2 dim N 
h~(N, 7) ~ h~(Nk, 7) + ce~/3 in - -  

8 

3. THE ENTROPIC D I M E N S I O N  OF A C.P. M A P  

In refs. 4 and 5 it has been shown that the entropy of space trans- 
lations coincides with the entropy density. By using equivalence relations, 
the entropy of any quasifree evolution can be evaluated as strictly positive 
in one dimension, and infinite in higher dimensions. Evidently, it is against 
any physical intuition that free time evolution mixes in a qualitatively 
different way in different dimensions. 

On the other hand, we can consider a lattice system in one dimension, 
dim Nx = d, interacting with a finite-range potential. Then it is known (9) 
that the system has finite group velocity; therefore 

"ctN[o,l ] ~ N[_vt, l+vt] 

and, using properties 1, 2, and 6 of the entropic functional, 

h(z, NEo.tl) <~ e(6) +1 Ho~(NE . . . .  ~+ v,l) ~< 2v in d +  e(6) 
/1 

so that the time evolution in one dimension has finite dynamical entropy. 
On the other hand, imagine a time evolution that behaves like a diffusion 
process, such that 

z,NEo.l I ~ NE_v~/7,1+~,/7 l 
Then 

1 
h(z, NEo.ll) ~<lim- H(N E v.f~a+~./fil) = 0  

n 

These observations inspire us to define 



1278 Benatti and Narnhofer 

and 

Defini t ion 3.1. Let N be a finite-dimensional subalgebra.  Let 

1 
l i r a  ~-; H~( N,..., ? 'N)  = O, :~ > fl 

1 
n ~ H ~  ~ n lim - -  (N , . . . ,  7 N )  = ~ ,  ~ < fi 

n ~ c o  

Then we call fl the entropic dimension of 7 with respect to N: ~N(7) = ft. 

Remark.  If  we consider the space translat ions of a v-dimensional 
lattice, then it is indicated in ref. 6 that  

1 H,o(N, .... ~r ~ . . . a x N ) - s ( o o ) # O  - -  n _ _  lim n v x~ 

So our  definition is in this sense a generalization of the dimension v. 
We make  the following observations:  

k e m m a  3.2.  The entropic dimension of a one-dimensional  
semigroup is always ~< 1. 

k e m m a  3.3.  The entropic dimension of a quasifree evolution z in 
any dimension for any finite-dimensional N is 1, so that  ~ ( r ) =  
sup ~ N ( ~ ' )  = 1. 

This follows immediate ly  f rom the calculations in ref. 5. 

k e m m a  3.4.  The entropic dimension of the identity is zero. 

L e m m a  3.5.  Let V be a contract ion semigroup such that  ~ooV=~o 
and n - l i m [ y ' a  - ~o(a)] = 0. Then 

h~o(N, 7) = 0 and h~o(7) = 0 

Proof. Due to the norm convergence, 

lim ~ o2i(1) S(co o y" o iN] o5io 7 '~ o iN) = 0 
n ~ o o  

uniformly in all decomposi t ions  ~ o = Z  coi with ~oi (1)>e  (which can be 
assumed as argued in ref. 4). 

Therefore 

1 - ~ H~o(TkN)=0 lira - H ~ ( N  ..... 7nN) <~ lira 1 " 1 
n 1"/ n M k =  1 

for any N 
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4. AN EXAMPLE WITH ~N(Y)=0  

Let us be given the Hilbert space 

/ 2 ( Z )  = {f= {f(Z)}z~Z: ~ [f(z)[= < +oc } 
z 

Consider the fermion algebra A generated on/2(Z) by the annihilation and 
creation operators a t ( f ) ,  a( f )  satisfying 

{at( f ) ,  a(g)} = ( f l  g> = ~ f ( z )*g ( z )  
z E Z  

{a(f) ,  a(g)} = {ae(f),  a+(g)} = 0 

where f and g belong to 12(Z), and 

a( f )  = ~ f ( z )  az, 
z 

otherwise 

az = a(6z) 

or d~(0) = e ,o~ 

Let { Uy}y+ z be the space-translation group on the one-dimensional lattice: 

1 f~ ~ei0<x_y~r ) (Uy f ) ( x )  = f y ( x )  = f ( x  - y) = ~ -~ 

Let 0 be a linear operator on A defined as follows: 

if X is an even Wick monomial 

if X is an odd Wick monomial 

and Ds[ . ]  be a derivation corresponding to a quasifree time evolution 
on A: 

Ds a#(f~) = I-I a#( f / )a#( iS fk )  a#( f j )  (4.1) 
1 k = l  j = l  j = k + l  

where 

( p  I S f >  = e(p) f ( p )  

Let {?t}t+ R denote the evolution on A generated by the following equation 
of motion: 
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dT,[x] 
- - = D s [ Y , E X ] ]  + ~ [2a*(f~) O[7~EX]] a(fz) 

dt z~Z 

- {a*(f~)a(fz), 7t[X] }] 

+ 2 [2a(g~) O[7, [X]]  a*(g~) 
z ~ Z  

- {a(gz)a*(gz), v,[X] }1 (4.2) 

X s A ,  f and g~ 12(Z). 

Def in i t ion  4.3. Given a C*-algebra A, {7,}t~o is called a quantum 
dynamical semigroup (q.d.s.) if the following conditions are fulfilled: 

1. ~t is a completely positive map on A for any t ~ R + 

2. 7 ,o7 ,=7 t+ ,  for any t, sER + 

3. The semigroup is strongly continuous, i.e., 

Jl~EX]-Xll  ,~o+ , 0  VX~A 

4. ~ , ( 1 ) =  1 

T h e o r e m  4.4. ~1~ The rhs of Eq. (4.1) is the generator of a q.d.s, on 
A and for f = g the tracial state ~b is the unique invariant quasifree state 
under (~,}t~R+" Moreover, any other state on A w*-converges to 4. 

Proof. See Theorems 5.1, 5.2, and 8.1 and Segg. in ref. !0. 

Remark. Complete positivity is more than positivity, as it concerns 
tensor products of C*-algebras, and turns out to be a necessary property of 
those evolutions of finite systems that originate from a coupling with a 
reservoir and a subsequent elimination of the unnecessary degrees of 
freedom. 

This procedure has been claimed to be a description of irreversibility 
in quantum systems and fruitfully applied in several fields of interestJ m 

Lindblad ~2) discussed (apart from the fact that he is asking for norm 
continuity) a more general class of models. Our examples are exactly those 
for which creation operators are mapped into creation operators, and thus 
are the generalization of quasifree automorphisms. 

Def in i t ion  4.5. Let A be the bounded linear operator on /2(Z) 
defined by 

A= Z ]f~)(f~l, (OIA]h)=}f(O)t2h(O) (4.6) 
z ~ Z  
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Set 

7(0) =- ! f (o)l  2 and C = iS - 2A: (4.7) 

( 01Clh ) = Fie(O)- 27(0)] h(0) (4.8) 

Denote a#(eC'6~) with are(t), where 

(eC~dr)(O) =ei~(~ 2~~ i~o 

Let {i}~ ({i}P) be a subdivision of p integers into two subgroups of 
p -  k (k) and k ( p -  k) elements, both arranged in increasing order. 

Let e({i}P) [e({i}~)] be the sign of {i}P ({i}P) as a permutation of the 
initial p integers. 

Call 

F~.~,--~ ~dk,{J} 

the determinant of the matrix 

T h e o r e m  4.9. 

where 

[ r[,,, ... F;,,k J 

' -  dO . 1 -  eiO(r s) 

Given the ordered Wick monomial 

P q 

X =  ['1 a + i, I ]  aj, 
r ~ l  s = l  

where i r and Js denote points on the lattice, we have 

[q ,P]  P q 

7 t [X]=  ~ ~ ~ a({n}P) e({m}Uk)Fi,I;,T~5 ~ ~ a*,,(t) [ I  am,(t) 
k=O {n}~ ~ -~  r = k + l  s = k + l  

where 

Proof. 

Eq, p]  - min{q, p} 

{n}p-= {nk+l < ... <np,  nl < ...  <nk ,  nre( i l , . . . , ip)}  

{m}q~ {ml< . "  < m k ,  mk+l  < ""  <mq,  m s e ( j l  ..... jq)} 

See Appendix A. 
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Def in i t i on  4.10. By duality, {~,},~>o induces an evolution {7"},~>o 
on the state space: if co is a state on A, then 

~ , [ x ]  = 7 ; c o [ x ]  = c o D t [ x ]  ] 

The invariant state ~b, if any, will be called uniformly stable if for any other 
state co we have that 

lim [Icot-~ll = 0  
t ~ + O O  

Remark. The algebra A we are dealing with is a UHF algebra. It is 
given by the norm closure of an ascending sequence of matrix subalgebras 
Ma of increasing dimension 2 a, i.e., those matrix algebras generated by 
annihilation and creation operators sitting at the points of a d-point 
interval around the origin. 

T h e o r e m  4.11. Let a Ma subalgebra in the generating sequence 
{Ma} be fixed. If 7(0) is strictly positive (e.g., a nonzero constant), then the 
state obtained by restricting the tracial state ~b to M j  is uniformly stable 
with respect to the restriction of any other state co on A to the same Mu. 
This holds true for any d <  +oo together with 

if 

]]~/*~ ]Ma-- ~lMd[] < e 27~C(d) 

7 - m i n  ~(0), Oe [ - n , n ]  

Proof. See Appendix B. 

Remark. f(d) = 6dd! provides for an estimate which is surely non- 
optimal and which cannot be extended to cover the case of finite-dimen- 
sional subalgebras not contained in any of the Md. Theorem 4.11 improves 
in this simple model the weak* convergence shown by Davies (1~ insofar as 
it gives an explicit bound when w*-convergence and norm convergence 
coincide. 

Corollary 4.12. h~(% Ma, fl)=O for any d <  +vo and any 
0<f l~<l .  

Proof. Since {7,},~o is a q.d.s., we can apply the results reported in 
the preceding section. Using the subadditivity of the H~ functional, where q~ 
is now the tracial state, we get 

n l 

Hq~(Ma, 7Ma,..., 7" ~Ma) <~ ~ Hc,(TkMa) 
k = O  
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Using the uniform estimate of Theorem 4.2, the inequality (8) 

2d 
ISo~ - S~I ~< e In - -  

8 

when o) and c5 are states on a d-dimensional algebra such that l ie)-  chll = e, 
and the definition of H~(TkMa), we finally obtain 

1 1 ~ ! f ( d ) e  2./k[ln22d+l 1 lira n- ~ H~(Md,..., 7" Md) <~ lim ~ ~ = N L ~ + 27k 

for N > 1. This limit is zero for any 0 < ft. 

Corollary 4.13. 

h~(7) = sup h~(M, 7, fl = 1)=  0 
M finite dimensional  

Proof. We can apply the non-Abelian analogue of the Kolmogoroff-  
Sinai theorem and the result follows simply by Corollary 4.12. 

Remark. In order to say something about h~(7, fl), we should be able 
to manage h~(N, 7, fl) when N is an arbitrary finite-dimensional subalgebra. 
In other words, we should need a control on the stability of the tracial state 
~b with respect to the restriction on any N c A and not only to the matrix 
subalgebras Md. This is not necessary for the f l=  1, since then norm- 
equicontinuity in the 7ko is maps appearing in the Hr functional allows us 
to avoid seeking a uniform bound for the difference llT,(x)-q~(x)]l in 
Theorem 4.11. 

5. ENTROPIC DIMENSION 0<13<1 

In this section we vary the example of Section 4 by allowing that 
7 (0)=0 ,  somewhere between -Tr and n, and we take 7(0)=0.  We expect 
that the entropic dimension is given by the way 7(0) tends to zero for 0 ~ 0 
compared to the mixing behavior of the norm-preserving part of the 
contraction map that is ~(0) in the corresponding neighborhood of 0 = 0. 
For simplicity we fix our initial algebra N = J / / l -  the 2 x 2 matrix algebra 
generated by a 0 and a; ,  the annihilation and creation operators at the 
origin. 

For  this matrix we denote: 

D e f i n i t i o n  5.1. r is the tracial state on J{1 corresponding to the 
density matrix �89 o). For  an arbitrary state ~b i, q~ioT,o io corresponds to a 
density matrix 

Pi't= 1 --ai, t /  
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where ai,,=di(7~(a*oao)), bi.~=~i(y,(ao)), and i o = - - i . : a l  . We obtain the 
following results. 

T h e o r e m  5.2. Assume that 7 is the contraction semigroup defined 
in (4.3)-(4.5). Assume that ie(O)=iO (i.e., the shift). Assume that 7(0) 
approaches 0 as 10l ~. Then 

~ , , ( 7 )  = (~ - 2)/~, ~ > 2 

Proof. We are interested in the asymptotic dependence on n of 
Ho(J{~ ..... 7" ~J/4) and will control it by finding lower and upper bounds 
with the same leading term n ~/(~- 2) for large n. 

L o w e r  B o u n d .  From the definition of He we get a lower bound 
just by fixing a decomposition of the invariant state ~b. 

We choose 

" ~ 1 + ( - 1 )  'k(a2+ak) 
X ( i ) ~ X i o " ' i n  l ~ ~ I  k=0 2 , ik=0,  1 

and 

d(,) = ~ (x ( , ) ) - '  t)(x(,). ) 

Then, due to the orthogonality of 5k(O)= e ~0k, the tracial state factorizes 
such that 

n _ a  

~b(x(o) = 1FI ~ 2 = 
k=O 

and 

()~( ' ) = ~) ( l + (-1)ik (a~ + a2) 
(5.3) 

The classical part of the entropic functional H~ vanishes due to the 
factorization, and we remain with 

n 1 
H~(~, ..... ~~ 1~'1)~> Y~ ~ ( 1 ) s ( ~  11~o7~/~,,,) 

k=O 

1 n--1 n ~ l  

The entropy S(p) is determined by the eigenvalues of p, which we know 
sufficiently explicitly: 
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1 
aik'k 2 

bgk,k = (-- 1)'k ~--~ doe  -2~(~ Xk (5.4) 
~z 

12 _ 1 + _ ~  

-21 ~ S ( p i k , k )  _ in 2 - 1 +2,xk In ~ - - 1  + xk 1 ~ _  In - - - - ~ -  xk 1 - xk _ in 2 
tk 

= O(x~) = O(k -2/~) (5.5) 

due to the following result. 

P r o p o s i t i o n  5.6. Let us assume that y(0) 0~0 10l~. Then, 

1 f~ k~ +~ 1 xk = ~ doe  2,y(O)k k 1/~ 

Proof. We choose ~ > 0 so small that 

xk=- f~  6 dOe 21~ +O(e  ~k) 

(Ca is a strictly positive constant depending on 6 > 0). 
Since ~27~= ~ k -2/~ >~ cn(~ 2)/~ with c > 0 for n large enough, we have 

limn~/(~ 2)[Hr ..... Y" l~/'l)---cr/(~ 2)/~] > 0  for some _c>0 

U p p e r  B o u n d .  We use the upper bound for H~(dgl ..... Y" 1Jr 
[-(2.1),(2.5)] and are therefore interested in the k dependence of 
H o(Tko/[/ZI \ 7 k -  ldr ). 

Proposition 5.7. Assume that lim ykrn=~b(rn) for r n e ~ '  1. Then 
the leading term of Ho(Tk,/[4fl\Tk-lJ/{1) for large k is given by 

sup ~2r k--~ll= =-IIp~,k ,--rllN) 

where rl" 1[2 is the Hilbert-Schmidt norm. 

Proof. See Appendix C. 

The eigenvalues of the Hermitian matrix Pi, k--~ are 

)~+ = -~-(Ibi, k[2 -~ - I1-- ai, k[2) 1/2 
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We denote 6o k = eCkSo and a(6~)= ao(k), 

IIP/,~-~11~- IlPi, k-1-~11~ 

=2(Ibi, kl 2 -  Ibi.k_ll2+a~k--a~k_l--a~,k ~ +a~,k+l) 

2 {l~i(ao(k))l z - Iq;e(ao(k - 1))12 + ~i(a*o(k) ao(k)) 2 

- f)i(ato(k - 1 ) a o ( k -  1))2 4-~ (1 --ll6ok][2) 2 -41 (1 -[16o*"lh 2)2 

+~,(ato(k) ao(k))(1-  l[6~[12)-~i(a*o(k - 1 ) a o ( k - 1 ) ) ( 1 -  116o k *ll 2) 

[[6oklL 2 1lSok-*lL 2} 
+ ~ ' ( a ; ( k - 1 ) a ~ 1 7 6 1 7 6  2 2 

Therefore (5.8) 

2 ~be(1)(l[P,,k -- ~ll~ -- LIp~,~- 1 - rll~) 

=22~b~(1)II~i(ao(k))12-[d~(ao(k-1))12 (lst term) 

+~(ato(k) ao(k))2-~(ato(k - 1) ao(k -  1)) 2 (2nd term) 

116o k ~ll 4 -  1160'1141 + 5- (3rd term) 

We are now interested in studying the behavior for large k of the 
above three terms. 

In order to get an upper bound, they should be given independently of 
any special decomposition of ~b. 

I st  T e r m .  

[~i(ao(k))l:-16e(ao(k- 1))1: 

= ~ , ( a o ( k ) )  ~ , ( a t o ( k )  - a to (k  - 1)) + ~ , ( a t o ( k  - 1)) d , ( a o ( k )  - a o ( k -  1)) 

(1) 
1160k--5~-~ll(llS0kli+llS~-lll)=O ~ O(k-~/2")=O(k-2/~) 

For the last estimate see Proposition 5.9 below. 
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2nd T e r m .  

~,(ato(k) ao(k)) 2 - ~i(a~o(k - 1) a o ( k -  1))2 

= [6,(ato(k) ao(k)) + 6,(ato(k - 1) ao(k - 1))] 

x { ~ i ( a t o ( k ) [ a o ( k ) - a o ( k  - 1 ) ] ) + ~ i ( [ a t o ( k ) - d o ( k  - 1)] a o ( k -  1))} 

~<(ll&~ll2+ H&~-IlI2)(IlaGII + Ilao ~ '11)li6o~-a0~=lll 

= O(k -1/~) O(k -1/2~) O(k 3/2~) 

= O ( k - 3 / ~ )  

3rd T e r m .  

I(116~ 1112- 11&~l12)(ll&~-ll12+ 116okll ~) 
= O ( k - {  1 +~)/~) O(k-1/~)  = O ( k - {  2+ ~}/~) 

F r o m  Propos i t ion  5.7 we already know that  

ll&kll k ~ + ~  1 
kl/2~ 

Therefore  lipS,-~Sok-111 and 1160 k 111- [l~S~ll need to be est imated:  

P r o p o s i t i o n  5.9.  Set ~ >  1; then 

II& ~ -  1112 - I I~ l l  2 ~ ~ + ~  ( l/k)(1 + ~)/~ 

and 

11{~- 6o k ill k~Z~  ( l /k)  3/2~ 

Proof.  As was previously done, we can consider a ne ighborhood  of 
0 = 0 so small that  7(0) can be identified with 10l =. Outside this region the 
integral decays exponent ial ly  fast with k. 

Hence  116o ~ 1[I 2 -  116okll 2, for large k, goes like 

f~ dOe-a l~  + 4  101 = -  1] ~ ( 1 / k )  {1+~)/~ 
- -6  

and l[6ok-C~ ill 2 goes like 

f 6 e I~ k(1 + - cos O) dO 4 e 4 iOl ~ 2e 2 iOl ~ 

dOe-41~ 3/~ if ~ > 1  
- 6  
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C o n c l u s i o n s .  For any decomposition of ~b into the states q~g the 
first term goes to zero faster than (l/k) 2/~, the second one goes to zero 
faster than (1/k) 3/~, and the third term goes to zero faster than (l/k) (2+ ~)/L 

Evidently the first term is the leading one so that 3 some c such that 

and 

lim ](=/2[H(Tk,/[gl\y ~:- l J r  - -  ck ~/2] < 0 

lim n~/(2- ~)H~(.//g~ ..... ~ ~Jr <~ g 

This proves Theorem 5.1. 

Remark. Since we already know the lower bound for H~, we notice 
that there must exist a decomposition {~b~} such that 

l~i(ao(k ) )] 2 - I~e(ao(k- 1))12~ (1/k ) 2/~ 

We try a decomposition 

q~( ' )=~b( l + b + + b ' ) 2  

and take for the normalized function corresponding to b 

e,O~- 2-,(O~ g( O ) 
f(O) = 

I1.11 

We notice first that g(O) = 1 gives the optimal decomposition if we want to 
calculate Ho(Tk o io): Using the result of (5.2), we have to evaluate 

O(xk) = O((f[6~)/I]f]l) 

so the optimal choice is 

f = 6~/116~H 

For evaluating H~(~ko io\7~-~o io) the leading term is given by 

( f 1 6 ~ ) ( 6 ~ l f ) -  (f16~o-1)(6~ - '  I f )  

= ( f l  ak-o--o ' sk-~)(6~lf )+(f l#~ ~ ) ( , ~ - 8 ~  ~ l f )  

~- + 2 - . . )  f [exp(--2kO~)]~(Oz)d02 f dO~ [exp(--ZkO~)]~,(Ol)(iO1 02 

+ f  ~(O2)[exp(_2kO~)]d02~(_i01 02 0 ~ + - f -  ~v2 . . . }  [exp(- 2kO~ ) ]~(01) dO1 o d \  
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The integration with the iO term is dominating, but only remains for 
~(0) r 1 in the appropriate scaling, which shows how delicate the decom- 
position for Ho(Tko i0\yk-lo i0) has to be. 

We return to our initial problem and state the following result. 

Theorem 5.10. Assume that 7 is again the contraction semigroup 
of (4.3)-(4.5). Assume that 7(0) approaches 0 as 101 ~ and e(0) approaches 0 
as 10l~. Then 

~ 1 ( ~ )  = - -  

The proof can be found in ref. 13. We have only to vary the ideas to prove 
Theorem 5.1: For the lower bound we start with a function so that all eiSnf 
are orthogonal to each other and thus we control the classical part. The 
upper bound remains the same; only the integrals have to be estimated 
differently. 

To discuss the above result, we observe the following: Our contraction 
semigroup can be split into two parts, the pure contraction 7(0) and the 
automorphism 5(0); both let the state converge, 7(0) strongly and 5(0) 
weakly. Nevertheless, in the dynamical entropy they are in competition; 
5(0) increases the entropy, the better it mixes, while 7(0) decreases the 
entropy, the faster it lets the state converge. This shows, mentioned in the 
introduction, that the relation between the mathematical concept of 
dynamical entropy and the physical problem, how a system approaches 
equilibrium, needs further investigation. 

APPENDIX  A 

Given the fermionic algebra A on the Hilbert space 12(Z), let us 
consider: 

(a) An ordered Wick monomial 

p q 

x=_ I-I a+(L) I-I a(gj) 
i = 1  j = l  

(f~, gj belong to /2(Z)  Vi, j). 

(b) The bounded operators on /2(Z) 

z c Z  z ~ Z  

IF, G belong to 12(Z) and F~(x)=F(x-z),  Gz(x)= G(x-z)] .  

822/53/5-6-18 
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Define two bounded linear operators WA[-] and Y e [ ]  on A as 
follows: 

at(L) a(gj) 
i j = l  

p k - - 1  p q 

= -  E 1-I at(f,)at(Afe) 1-I a t ( f  ) I-[ a(g,) 
k = l  i = 1  i = k + l  j = l  

q p k 1 q 

- Z 1-I at(L) I-I a(gj)a(Agk) I-I a(&) (A.!) 
k = l  i = 1  j = l  j - k + l  

Ys a(g/) a*(fi) 
1 i = 1  

q k - - 1  q p 

= - E I-I a(&)a(Bgk) ]-I a(gj)I]  at(f,) 
k = l  j = l  j = k + l  i = 1  

p q k - - i  p 

- E 1-[ a(gj) [-[ a+(f~)at(Bfk) 1-[ at(~) (A.2) 
k = l  j ~ l  i = 1  i ~ k + l  

Let Ds[. ] be the generator of the free evolution on A, i.e., 

Ds a+(.~) a(gj) 
i j = l  

p k - - I  p 

= Z I-I a*(fi) at(iSfk) [] 
k ~ l  i = l  i = k + l  

q p k - - 1  

+ ~ I~ a*(f~) 1-1 a(gr 
k = l  i = 1  j = l  

q 

at(f/) i~ a(gj) 
j=l 
q 

FI a(gj) 
j - - k + l  

In ref. 10 it is shown that 

(A.3) 

L[X] = Ds[X ] + WA[Y] + YB[X] 

is the generator of a quantum dynamical semigroup {Yt},~0 on A which 
actually coincides with that introduced in Section 4. Set 

C= i S - A -  B, Bo = B + B t 

= fo' ds(eCSf,., BoeCS&), [q, p]  = rain{q, p} F[j 

Given p (q) integers in increasing order, {i}~ ({j}y~) indicates the per- 
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mutation obtained by grouping together p - k  (k) and k ( q - k )  elements, 
respectively, and arranging them in increasing order: 

{i}'~=-(ik+l,... ,ip, il ..... ik): ik+, < ...  <ip,  i l <  ...  < i  k 

{ J } q = ( J l , ' " , J k ,  Jk+l, '",Jq): j l <  "'" < j k ,  j k + l <  "'" <Ju 

e({i}P) and s({j}{) are the signs of the corresponding permutations. Let 

t 
f , p T~v,,q {'}k,D}k 

be the determinant of 

[ F~k 

[ rtilJl 

. . .  F i'k j k 

�9 .. Fi'lj k 

and set 

The proof of the statement of Theorem 4.1 consists of two steps. 
First we show that 

p k - - 1  p q 

L[X] = Z [ I  a'(fi)a*(Cfk) H a+(f,) I-I a(gy) 
k = l  i = l  i - - k + l  j = l  

q p k - - L  q 

+ • [ I  a*( f , . ) [1  a(g,  l a(Cgk) [ I  a(gy) 
k = l  i = 1  j = l  j = k + l  

P q 

+ ~ e ({ i }P)~({J}q) ( fq ,  B o & l )  [ I  a*(f#) 1-I a(gj,) 
{ i }lP { 7 }  q r = 2 s = 2 

(A.4) 

Then we show that 

[q,p] 

"LY}k) F{i}L{j}~ 
k=O {i}~ 772 

P q 

x I--[ a*(eC% ") H a(eC'gJs) 
r = k + l  s = k + l  

satisfies the evolution equation 

(A.5) 

d 
7 ~ , [ x ]  - L D , [ X ]  ] 
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Although not very complicated, the proof is rather long and tedious. We 
skip most of the details and sketch the main lines. 

Taking (A.4) for granted, we find that (A.5) is true just by comparing 

[q 'P]  d t P q 

Y E Y ~((,};)~( k=0 { i }~DT~ {J}~)~-TF{,}L]TY~ ~I a*(eCE~) 1-I 
r = k + l  s = k + l  

which comes out from dT,[X]/dt, with 

[q,P] 

E 2 Z e({i};)e({J}q) F'p~-''q 
k=o {~}f TX~ 

n + 1  m = k + l  

g(ik + 1 ..... ip, in) 8(jm, j~ + I,'", Jq) 

a(eC'&,) 

(A.6) 

teC~f c, 1T x . . . . .  BoE g im)  a*(eCZ~) a(eC'gi,) (A.7) 
r = k + l  s = k + ,  

which we get by applying L[ .  ] to 7,[X]. [The primes mean that at(eC'fik) 
and a(eC'&,,) are to be removed from l-[~=k+lat(eCfir) and 
Hq=k+ 1 a(eC'&), respectively.] 

Observe that the sum in (A.6) starts from k = 1 due to the definition of 

F~i)LTT], 

and that the sum in (A.7) ends with k = [q, p ]  - 1 due to (A.4),  
After setting k = q + 1 in (A .6 )  and fixing in both formulas the coef- 

ficients of equal products 

P q 

H am(eCfra) I-[ a(eC'gsh) 
a = k + 2  b = k + 2  

(A.5) is a consequence of 

and 

(eC'f, , B c, d oe g/.,) = ~ gi',,i, . 

d k + l  k + l  

' ) ~(sl . . . . .  ~ ,  Sm) - - r  , - -q  = Z E ~(r,, r, . . . . .  dt {r}k+~,I~}k+~ , rk+l sk+ 
n = l  m = l  

(eCts ct t x . . . .  , B o e  g~m) F ~' - - q '  {rh+~,{s}k.j 

(the primes mean that the r~ row and the sm column are to be removed 
from the matr ix ) .  
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To prove (A.4), we notice that, due to (A.2), we have to show that 

YBEX] = Ys a*(f,.) a(gj) + a*(fi) Ys a(gj) 
i =  j =  i = 1  1 

P q 

+ Z Z e({i}f)e({J}q)(f~l, BogJ,) I-I a*(f~,) l-[ a(gj,) (a.8) 
{/} p { T  q r = 2  s = 2  

To this purpose, we proceed by induction. We want to get that 

i =  1 = 1  l = 1  

= YB a*(fD I~ a(gj) at(fp+~) 
-- j = l  / = 1  

i=l j=1 /=I 

o o [,0, J + a*(fi) a(gj) Y, a*(fp+,) 
i = 1  j = l  

for any m ~ N. 

+ ~ ~ e({i}P)e({J}q)(f~,Bogj~) 

P q 

• H a*(Z..) fl "(g,s} ."0".+,) 
r = 2  s = 2  l = 1  

(A.9) 

This holds for p =  1, because we can bring a*(fl) to the right of 
l-Iq=l a(gj), apply Ye[ . ]  according to (A.2), and then replace the first 
creation operator to the left of the product of annihilation operators. 

Doing this, we obtain many terms because of the anticommutation 
relations. 

Most of them cancel each other and we finally remain with the 
required expression. 

Once we assume (A.9) to be valid for p = n - 1 ,  showing that it also 
holds for p = n involves the same trick applied to the nth creation operator 
on the left of l--[q= 1 a(gj). 

Formula (A.9) implies (A.8), since we are free to choose m, i.e., the 
number of creation operators standing at the right of 1-[q= 1 a(gj). 

A P P E N D I X  B 

Let us consider the matrix algebra Ma generated by creation and 
annihilation operators located at the points in an interval of size d around 
the origin. 
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Let us indicate with (i)k an increasing sequence of k points chosen 
among those of the given interval and use {a, r, aj} =6,j to write any 
element X belonging to Md as follows: 

d d 

X = C 0 +  2 ~ C(i)k.oa~"'a*i~ + Z Z Co.(,,~aJ~"'aJk 
k = l  (i)k k = l  (i}k 

d d 

+ 2 S 2 2 Cub.( j ,qa~" 'a*~,aJ, '"a, ,  (B1) 
p = 1 q = 1 (i)p ( j )q 

Due to Appendix B and with ~b the tracial state, we make the following 
observations that enable us to control 

117,[a*~l""a; aj, . . . ajq] -- (~(a~ . . . a;  aj, . . . ajq)ll 

Observations. 

B2i. 

(B2) 

is zero unless r i = s i ,  i =  1,..., k. In that case 

F '  p--q =2~ (1 e-4~) ~ 
1 

and 

t F p --o = det {r}k,{s}k IF 
' 
rkSl 

F'  rl Sl 

�9 . .  F;'.,]. 
--. F',,~ _] 

a e ( t ) = a # ( e C ' 6 r ) ,  6 r (O)=e  -i~ 

Itar#(t)ll  2 - - ~ - ~  - ~  dO e 4 , ( o ) , <  e - 4 7 t  

[either 7 - 7(0) or 7 - min ~.< 0.< ~ 7(0)]. 

B2ii. The symbols {r}f, {s} q appearing in the explicit expression of 

are the permutations of the numbers ia ..... ip and Jl ..... iq  respectively, 
which have been defined in Appendix A. We have (P) and (q) of such 
permutations, respectively. 

B2iii. If 7(0) - y > 0, then 

F~. = f~ d s ( e C ~ ,  BoeC,(Sj) = ~ ( l _ e 4,~,) 
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B2iv. If 7(0) is not constant but has a positive minimum 7, then 

Ftrts = ~ ar, s--~--~ j_  n dO ei~ -4e(O)t 

and 

k~ 
IF' ~ - -d  

Furthermore, when {r}; differs from {s}p p we get 

, _ _  P !  e-4;,t IF{,.}:,{~};[ ~<~ 

B2v. If {r}p p=  {S}p p, then 

IF{<,s {~},;- r -..a~ aq .. -a~,)l 

<~ 
t P e--4~,t when 

P! e -47' when ~7 

7(0)-~ 

7(0) has positive minimum 

Taking into account the above B2i-B2v, we can now discuss the 
various cases: 

B3i. p ~ q :  

[[Tt[a~*l... a ~ p a k  . . . a jq ]  - q~(a~l . . . a~pa j  . . . a jq)  H 

[q,p] 
~< Y, Y, Z le '  , - ,  e -= '<~+' -=~ '  {r}k {S}k 

k! p q 1 
~ e  2 ~ ' [ ~ ? ] - ~ - ~ ( k ) ( k ) < ~ d . ( ~ ) a e - 2 ~ '  

B3ii, p = q ,  ( i ) p  ~ (j)p: 

b , E  a +,~ " " a t : , ,  " " a : q ]  - : (  < . . . ~ 7 : , ,  . . . a , , ) ,  

~< k=o ~ \kJ 2 k e-4yt(p-k) + 27 e-4?t ~dI" e 2yt 
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B3iii. p = q, (i)p = (j)q: 

E[v,[a,~"'a~ a , ,  . . . a , p ]  - q ~ ( a ~  . . . a~p  a ~ t  . . . a , ; ) [  I 

2~=i (Pk) ~-~ e -4'(p k)t +~  e-4yt <~ e-4~'td(~)a... ,(O)--- 7 
<<. 

(;) ({ k 2 0  ~p-lk!= 2 e - 4 y ( p - k ) t  +2 pp]e-4y'<~d! e-47"""" ~0~<~rnin 7(0) = 7 

Due to the fact that we have 4 a coefficients C(~)~,(j)~, Cusp, o, and C0,(i)~, 
each bounded in modulus by rlxrl, we conclude that 

d 

(i)k k ~ 1 ())k 

p = 1 q ~ 1 (i)p (j)q 

.~ 27t 

~< 6ad! e -2y' IFXII (B3) 

A P P E N D I X  C 

Fix the subalgebra N to be Md, i.e., the subalgebra supported by a 
d-points interval around the origin. It is a 2dx 2 a matrix algebra and the 
tracial state ~b restricted to it is represented by the density matrix 
z = l  .2 -u. 

Let Pl denote the density matrix q~ioTklN, and P2 the density matrix 
~ ' ~  k - 1  IN" 

Use the integral representation 

x l n x =  d~ x T ~ - X x §  ~ 

to get 

s(olN 16,~ 7kiN) -- S(r I ~, 16,~ Vk- 't N) 

= S(z I pl) - S(z I p2) 

= T r  d~ p2 +p2 Pl (c t )  
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Since we know that  Pl and P2 tend uniformly to z with k, we can fix K e N  
to be >> 1 and for k >~ K consider the expansion 

1 1 
Pic~ + p i - -  Pio~ + (pi- - 'c)  + r 

1 i l  - 1 = Pi ~ +---~ ~ + r  (p , -  ~) + ~ (P ' -  ~)~ . . . .  

"c T ~c 
c~+r c~+:  ( p i -  ~) + P t - ' c ) 2  

t 1 
+ - -  ( p , -  ~) ( p , -  ~)= + . . .  ( c 2 )  

O~ "[- r (~ _1_ ,~)2 

Since P i - r  is Hermit ian,  

T r [ p , -  ~3~ = l iP , -  rll,~ 

where I[" I1,, indicates the nth  norm. Note  that  II "112 is the Hi lbe r t -Schmid t  
n o r m  and I1" II n ~ I1" lira ~< " ~< 11" II 2 ~ I1" II1 for n ~> m. This and the uniform 
convergence a rgument  quoted above  allow us to state 

S ( ~ l p ,  ) - S(~ I p2) 

=2  d '(IIP,-~IE 2 -  IIp2-~ll~)+O(llPl-rl[~, IIp2-21[~) (C3) 
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